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Abstract

Since local unitary operations do not change any entanglement measures, to
manipulate the distribution of multipartite entanglement, non-local unitary
operations should be required. Given a three-qubit system, we study the change
of three-tangle under bipartite unitary evolution. We find, once the form of
a bipartite interaction is fixed, the changing rate of three-tangle depends on
additional single-qubit unitary operations. Furthermore, we give an explicit
definition of the three-tangle rate controlled by local operations. By taking
advantage of this three-tangle rate, we discuss three examples.

PACS numbers: 03.67.Mn, 03.65.Ta, 03.65.Ud

1. Introduction

Entanglement is one of the central topics of quantum science [1]. It shows some fantastic
behavior that is not presented in classical physics. The generation of entanglement often
involves global unitary operation. To quantify the capability of creating entanglement for the
global unitary operation, a lot of effort [2–6] has been devoted to the entanglement power
of two party unitary operators. Particularly, an entanglement power of the two-qubit global
unitary applied on bipartite pure states is given by Zanardi et al [2].

Although local operations do not change entanglement [7], they could serve as a control to
manipulate the entanglement behavior under global evolution. Dür defines the entanglement
rate of two qubits under non-local evolution as dE/dt [8] and controls the rate by local
operations. Jordan et al control some bipartite and tripartite entanglement measures of the
three-qubit mixed state ρAB ⊗ 1

2 1C under a non-local Hamiltonian by local operation [9].
Here we focus on a new issue: consider a three-qubit pure state |�〉ABC which evolves

under a two-party unitary operation UBC(t). Taking three-tangle as a genuine entanglement
measure, we investigate how the three-party genuine entanglement changes at the beginning of
the evolution. We use the changing rate to quantify the Hamiltonian’s capability of changing
entanglement. Concretely, we apply a local operation UC on qubit C before the global
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unitary evolution UBC(t). It is worth noting that the entanglement behavior of the system will
change under the new unitary UBC(t)(1B ⊗ UC). By manipulating UC , we can control the
entanglement-changing rate and make the process of entanglement increasing or decreasing
more efficient. However, according to Dür’s definition dE/dt (E is the entanglement measure),
we find that dτ

dt

∣∣
t=0+ cannot describe the entanglement change of some special but important

classes of the state, such as GHZ state, W state and biseparable states. We have to modify Dür’s
definition dE/dt and find other available functions to describe the entanglement-changing rate.

In this paper, we give a new definition of the three-tangle rate to solve this problem.
We choose a maximal time interval t ⊂ (0, t∗) during which the three-tangle changes
monotonically for all evolutions. Then we could quantify their capability of changing genuine
entanglement by observing the three-tangle at t = t∗. As will be shown in examples 1 and
2, for GHZ state, the three-tangle rate under the XXZ model could be maximized by rotating
the qubit C about the y-axis. But for W state, we have to consider all the parameters of UC to
maximize the three-tangle rate. In example 2, we will extend our method by applying a local
unitary on different qubits to optimize the three-tangle rate. In example 3, we find that, for the
biseparable initial state |�〉AB ⊗ |0〉C , the three-tangle is directly related to the concurrence
of |�〉AB . We can obtain the three-tangle at any time of the evolution by simply measuring
the concurrence of |�〉AB . Lastly, by taking advantage of the three-tangle rate, we relate the
generation of the three-tangle to the total entanglement resource of the initial system.

This paper is arranged as follows. In section 2, we first review the concept of the
concurrence and three-tangle. Then we will give an example to illustrate that local operation
could strongly affect the entanglement behavior of the three-qubit system under global
evolution. In the central part of this section, a new definition of the three-tangle rate controlled
by local operation will be given. In section 3, we will discuss some representative examples.

2. The three-tangle rate controlled by UC

Before embarking on our central issue, let us review some important entanglement measures.
There have been many entanglement measures for two qubits, such as the entanglement
of formation [14] and relate entropy of entanglement [15]. Wootters et al established the
concurrence as the measure of a general two-qubit mixed state [16].

Consider a general two-qubit state with the density matrix ρ, the concurrence of ρ is given
by

C = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4},
where λi’s are the eigenvalues of ρ(σy ⊗ σy)ρ

∗(σy ⊗ σy) in decreasing order.
The residual entanglement [10] of the three-qubit pure state is defined as the three-tangle:

τ = C2
A|BC − C2

AB − C2
AC , here C is the concurrence of the two-party subsystem. The three-

tangle τ of the pure state |�〉ABC = ∑1
i,j,k=0 aijk|ijk〉 could be expressed by the coefficients:

τ = |d1 − 2d2 + 4d3|,
where

d1 = a2
0 0 0a

2
1 1 1 + a2

0 0 1a
2
1 1 0 + a2

0 1 0a
2
1 0 1 + a2

1 0 0a
2
0 1 1;

d2 = a0 0 0a1 1 1a0 1 1a1 0 0 + a0 0 0a1 1 1a1 0 1a0 1 0

+ a0 0 0a1 1 1a1 1 0a0 0 1 + a0 1 1a1 0 0a1 0 1a0 1 0

+ a0 1 1a1 0 0a1 1 0a0 0 1 + a1 0 1a0 1 0a1 1 0a0 0 1;
d3 = a0 0 0a1 1 0a1 0 1a0 1 1 + a1 1 1a0 0 1a0 1 0a1 0 0.
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Dür et al have shown that the three-qubit pure state could be classified by two SLOCC
inequivalent classes [11]: the GHZ and W classes. In this work, we choose |GHZ〉 =
(1/

√
2)(|0 0 0〉 + |1 1 1〉) and |W〉 = (1/

√
3)(|0 0 1〉 + |0 1 0〉 + |1 0 0〉) as representatives for

these two classes and choose τ to measure the tripartite genuine entanglement. For the GHZ
class, the three-tangle τ �= 0; for the W class, τ = 0. It implies that the GHZ class is
genuine entangled but the W class has no genuine entanglement. In this paper, we restrict our
discussion to the genuine entanglement.

The change of multipartite entanglement often involves global operation, in which the
two-qubit unitary operation is a simple class. Let us consider a three-qubit system which
evolves under a two-qubit unitary UBC(t). We apply a local operation UC before the evolution.
Although the local operation cannot affect the entanglement nature of the initial state, it is
easily seen that the behavior of the entanglement will change under the new global unitary
UBC(t)(1B ⊗ UC). We give an example to illustrate this point of view.

Let the general three-qubit pure state be expanded by the standard basis: |�〉ABC =∑1
i,j,k=0 aijk|ijk〉. Consider that |�〉ABC evolves under the Ising unitary UBC = exp

(−iσB
z ⊗

σC
z t

)
. By a direct calculation, it could be verified that UBC is equivalent to local operation if

anyone of the following four conditions is satisfied:

a0 0 0 = a1 0 0 = 0, a0 0 1 = a1 0 1 = 0,

a0 1 0 = a1 1 0 = 0, a0 1 1 = a1 1 1 = 0.

It is easy to see that both GHZ and W states belong to this class. Therefore, all the five
local invariants of three qubits (trρ2

A, trρ2
B, trρ2

C, tr(ρA⊗ρBρAB), τABC) [17] remain constant
during the evolution.

If the third party applies an arbitrary unitary UC , the GHZ state becomes α|0 0 0〉 +
β|0 0 1〉 + γ |1 1 0〉 + δ|1 1 1〉 and the W state becomes α|0 0 0〉 + β|0 0 1〉 + γ |0 1 0〉 + δ|0 1 1〉 +
ζ |1 0 0〉 + η|1 0 1〉. Obviously, they no longer belong to the class, then UBC is no longer
equivalent to local operation. In this case, the local invariants will change correspondingly. In
particular, the evolution becomes capable of changing the three-tangle τABC after the operation
UC . This is apparently different from the Zanardi’s entanglement power which is LU invariant
[2, 3].

Several preview works have also focused on the entanglement change of the three-qubit
state. Acin et al found the optimal single-copy local protocol [12] to distill a GHZ state from
any three-qubit pure state with some probability by local operations. On the other hand, the
generation of entanglement often involves global operation. By considering two-qubit global
operation, Cai et al discussed the entanglement complementary behavior of the three-qubit
product state |φ〉A ⊗ |0〉B ⊗ |0〉C [13]. Jordan et al investigated the three-part entanglement
of the three-qubit mixed state ρAB ⊗ 1

2 1C under a simple unitary UAC and took the qubit C as
a control [9].

In this paper, we approach this problem in another perspective by studying the three-tangle
changing rate. Let a three-qubit pure state be driven by a two-qubit unitary evolution:

|�(t)〉 = UBC(t)|� ′(0)〉,
where UBC(t) = exp

[ − i
(
aσA

x ⊗ σB
x + bσA

y ⊗ σB
y + cσA

z ⊗ σB
z

)
t
]
. Here we change the

initial state |�(0)〉 by applying a local operation UC on qubit C before the evolution:
|� ′(0)〉 = UC |�(0)〉, with

UC(θ, γ, β) = eiα

⎛
⎜⎝

e−i(β+γ )/2 cos
θ

2
−e−i(β−γ )/2 sin

θ

2

ei(β−γ )/2 sin
θ

2
ei(β+γ )/2 cos

θ

2

⎞
⎟⎠ ,

3
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Figure 1. Three-tangle rate controlled by U applied on qubit C. First, we search all the UC and
obtain the corresponding evolutions. Then we find out the first extreme points t1 of τ(t, UC) under
each evolution and denote the minimal t1 by t∗(in this figure, t∗ = t1(U1)). For a given U, we
then obtain R(U) = |τ(t, U)t=t∗ − τ(|�(0)〉)|/t∗ by observing the three-tangle of this evolution
at t = t∗, i.e., the point of intersection of t = t∗ and all curves of τ(t, U).

where β and γ correspond to the rotation about the z-axis and θ corresponds to a rotation about
the y-axis [7]. We can always neglect the phase factor eiα , as it is irrelevant to the three-tangle.

Hereby, for given UBC(t), the whole unitary U global(t) = UBC(t)(1B ⊗UC) is determined
by UC . We can parameterize the three-tangle under U global(t) as τ(t, UC). By manipulating
UC , we can promote the efficiency of changing three-tangle for the given UBC(t).

If it is desired to find UC which maximizes the change of three-tangle when the evolution
begins, it may appear as if we could choose dτ(t, UC)/dt |t=0+ to describe the rate. However,
as will be shown in example 1, we find that dτ(t, UC)/dt |t=0+ is not an ideal function for
some special (but important) states. For the states whose three-tangle are zero, such as
the W state class and the separable state, dτ(t, UC)/dt |t=0+ is infinite. For the GHZ state,
dτ(t, UC)/dt |t=0+ equals zero. We have to find other available functions to describe the change
of three-tangle for these important classes.

It is a natural idea to investigate the three-tangle after a short interval �t during which
the three-tangle changes monotonically. For every τ(t, UC), the monotonous interval differs
correspondingly. Our goal is to obtain a monotonous interval t ⊂ (0, t∗) for all τ(t, UC).
Then we can observe the three-tangle at t = t∗ of all the evolutions to quantify their capability
of changing entanglement.

We search all the UC to obtain all the corresponding evolutions. Then we can find out
the first extreme value point t1(UC) > 0 of each τ(t, UC) such that dτ(t,UC)

dt

∣∣
t=t1

= 0 to ensure
that τ(t, UC) is monotonous at t ⊂ (0, t1). Denoting the minimal t1(UC) of all evolutions by
t∗(see figure 1), it turns out that (0, t∗) is the maximal monotonous interval for all τ(t, UC).
Note that t∗ is determined by the parameters a, b, c of UBC(t) and the initial state |�(0)〉.

After the value of t∗ is obtained, we search all the UC again and observe the three-tangle
change by averaging τ over a timescale t∗ with respect to each U global(t). Then we could have
a reasonably accurate estimate of the three-tangle rate controlled by local operation.
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From the above discussion, we could define the three-tangle rate controlled by local
operation mathematically: given a unitary U, the three-tangle rate R(U) controlled by U is
defined as

R(U) = |τ(t, U)t=t∗ − τ(|�(0)〉)|
t∗

, (1)

here t∗ = minUC
(t1), t1 is the minimal positive number satisfying dτ(t, UC)/dt |t=t1 = 0.

3. Examples

In this section, we will apply R(U) to three particular examples. To proceed, we simplify
UBC(t) by considering the XXZ model (a = b �= c). Since we are more interested in the
choice of U which maximizes R(U) than the explicit value of R(U), we can set a = b = 1
for simplicity.

Example 1. The GHZ state
After UC , the GHZ state becomes

|�〉 = 1√
2

(
e−i(β+γ )/2 cos

θ

2
|0 0 0〉 + ei(β−γ )/2 sin

θ

2
|0 0 1〉

− e−i(β−γ )/2 sin
θ

2
|1 1 0〉 + ei(β+γ )/2 cos

θ

2
|1 1 1〉

)
.

Under the evolution U global(t), the three-tangle of |�〉 after some time t becomes

τ(t, UC) = ∣∣cos 4ct + 1
4 (1 − cos 2θ)(cos 4t − cos 4ct) + cos θ sin(4ct)i

∣∣ . (2)

To illustrate that definition (1) is necessarily required, let us examine Dür’s definition of
the entanglement rate dE/dt[8]. Let τ(t, UC) = |z(t)|, on differentiation we get

dτ(t, UC)

dt
= Re z(t) d Re z(t)

dt
+ Im z(t) d Im z(t)

dt√|z(t)| . (3)

Combining equation (2) with equation (3), we arrive that, for the GHZ state, dτ(t)/dt |t=0+

equals zero as Im z(t)|t=0+ = 0 and d Re z(t)/dt |t=0+ = 0. (By a similar procedure, it could be
shown that even a �= b, dτ(t, UC)/dt |t=0+ = 0 still holds.) Moreover, it is easy to see that for
the initial states whose three-tangle are zero (W class, biseparable class), dτ(t, UC)/dt |t=0+

is infinite. Consequently, dτ(t, UC)/dt |t=0+ cannot describe the change of entanglement for
these states.

Let us return now to discuss our example. As equation (2) shows, τ(t, UC) is independent
of β and γ , hence it could be parameterized as τ(t, θ). Then we could obtain the value of
t∗ by minimizing the first extreme values of t1(θ). Figure 2 shows t∗ versus the Hamiltonian
parameter c. As an illustrative example, we set c = 0.6. Numerically, we get t∗ = 0.5 for
this evolution. Substituting t∗ into equation (2), we obtain τ(t, θ)t=t∗ and the three-tangle rate
R(U). As shown in figure 3, R(U) reaches its maximum for θ = (

k + 1
2

)
π,∀β and γ, k � 0,

when τ(t, θ)t=t∗ reaches its minimum.

Example 2. In this example we consider the state

|�〉 = α1|0 0 1〉 + α2|0 1 0〉 + α3|1 0 0〉. (4)

Under the UBC (t) of the XXZ model, the three-tangle of this state can also be calculated and
is given by

τ(t, UC) = 8α2
1α2 sin2 θ

2

∣∣∣α2(cos 4t − cos 4ct) cos2 θ

2

− .α3 sin(β + γ ) sin 4t + iα3 cos(β + γ ) sin 4t

∣∣∣.
5
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Figure 2. The range of t∗ of GHZ (-o- line) and W (+ line) state for the XXZ model. We can
take c > 0 because when we replace c by −c, the three-tangle of both GHZ and W states remain
invariant. This is easily seen from their expressions (2) and (4).

Figure 3. The range of R(U) as a function of θ . GHZ state, a = b = 1, c = 0.6.

We will discuss this example in two points of view.

(1) We first discuss the W state by setting α1 = α2 = α3 = 1√
3
. By a similar calculation

to the GHZ state, we can also obtain t∗ (see figure 2) for fixed c and the three-tangle
rate R(U). For c = 0.6, we obtain t∗ = 0.27. By setting ϕ = β + γ , we parameterize
τ(t, UC) as τ(t, θ, ϕ). The corresponding three-tangle rate R(t, θ, ϕ)t=t∗ is depicted
graphically as in figure 4. In fact, by a numerical calculation, it could be concluded that

6
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Figure 4. The distribution of R(U) of the W state if a = b = 1, c = 0.6.

if 0 � c � 4.24, R(U) is maximal for θ = (2k + 1)π, k � 0,∀β and γ . We only need
to rotate the initial state about the y-axis to reach this maximum. Otherwise, if c > 4.24,
we have to consider the parameters β and γ , which correspond to the rotation about the
z-axis. It should be emphasized that, if we observe the three-tangle of the system at t ′,
here t ′ > t∗, the distribution of the maximal value of τ(t, θ, ϕ)|t=t ′ becomes very complex
and differs completely from τ(t, θ, ϕ)|t=t∗ . This apparent contradiction arises because
τ(t, θ, ϕ)|t=t ′ cannot accurately describe the entanglement generation during the interval
t ⊂ (0, t ′). This confirms the importance of our definition (1).

(2) In fact, we could extend our method by applying three local unitaries UA,UB and UC

on all the three qubits to extract the optimal rate. However, this general case involves
complicated calculation as all the nine parameters of the three unitaries must be considered.
Here, we apply a single unitary on each qubit of |�〉 respectively, and then compare the
three results of the optimal rate. By a similar calculation we find that τ(t, UA) = 0 and

τ(t, UB) = 8α2
1α3 sin2 θ

2

∣∣∣∣α3(cos 4t − cos 4ct) cos2 θ

2

−α2 sin(β + γ ) sin 4t + iα2 cos(β + γ ) sin 4t

∣∣∣∣.
We choose α1 = α3 = 1

2 , α2 = 1√
2

and set c = 0.6 again. From the expression of
τ(t, UB) and τ(t, UC), we obtain their t∗ = 0.31 and 0.22 respectively. In both cases,
the three-tangle rate reaches its maximum at θ = (2k + 1)π where R(UB) = 2.16 and
R(UC) = 2.48. Hence, we get a higher maximal three-tangle rate if we apply the local
unitary on qubit C.

Example 3. Another example is provided by the biseparable state |�〉AB ⊗ |0〉C , here only
the first two qubits are entangled and the third one is not. Let the initial state |�(0)〉 =
(a|0 0〉 + b|0 1〉 + c|1 0〉 + d|1 1〉) ⊗ |0〉C , we obtain

τ(t, UC) = 4|ad − bc|2 sin2 θ | cos 4t − cos 4ct |. (5)

7
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Proceeding as before, we can also obtain R(U) and then maximize it by manipulating U. In
this example, we discuss the question in some other views. From equation (5), it is interesting
to note that, as the concurrence of the subsystem AB of the initial state is 2|ad −bc|, τ (t, UC)

is proportional to C2
AB . Denoting f (t, c) = |cos 4t − cos 4ct |, we could rewrite the right-hand

side of equation (5) as C2
AB sin2 θf (t, c). Thus, we separate τ(t, UC) into three parts: C2

AB

(the entanglement of the initial state), sin2 θ (the effect of the local operation) and the factor
f (t, c) (a function of t and the global operation parameter c). In an experimental realization, it
is much easier to detect the concurrence of the two-qubit pure state [19, 20] than to detect the
three-tangle. In our example, we can obtain the three-tangle at any time during the evolution
by simply detecting the concurrence of the arbitrary initial state |�〉AB .

Moreover, it is worth noting that the total entanglement resource of the initial state is
just the bipartite entanglement of AB as qubit C is separable. By applying fixed UBC(t) on
different separable states |�〉AB ⊗ |0〉C , we have the same resource of physical operation, the
same structure of the state, but a different entanglement resource. Equation (5) implies that,
for fixed UBC(t), when the total entanglement resource of the state increases, the three-tangle
rate R(U) rises correspondingly. This result may increase our understanding of the process
of entanglement generation. It is reasonable to believe that the generation of the three-tangle
is not only dependent on the global operation, but also related to the entanglement resource of
the initial system.

4. Conclusion

By defining R(U), we have given a detailed description of the three-tangle rate controlled by
local unitary operation under a two-qubit unitary evolution UBC (t). We provide a method for
investigating the change of a quantity which cannot be described by differentiation. We find
the local operations which maximize the rate for several examples under the XXZ model. We
also extend our method by applying local unitary on different qubits of an asymmetric state
to optimize the three-tangle rate. For the biseparable state |�〉AB ⊗ |0〉C , the three-tangle rate
rises with the increase of entanglement of the initial state. The three-tangle at any time during
the evolution could be obtained by measuring AB’s concurrence of the initial state.

However, we still lack a lucid description about the mechanism of multipartite
entanglement transformation. How the entanglement resource is shared during the global
evolution, whether and how the bipartite entanglement could be transformed into tripartite
entanglement are still open questions.
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